550 research outputs found

    First Experiments on Stochastic Cooling of Heavy Ion Beams at the ESR

    Get PDF
    At the experimental storage ring ESR of GSI, one half of the foreseen pick-up and kicker tanks are installed, the rest will follow in 1998. First experimental tests of the stochastic precooling system have been performed since April 1997. Longitudinal Palmer cooling was successfully demonstrated. E-folding cooling times of 8.6 seconds were determined with carbon beams. No significant dependence of the cooling time on the number of particles was observed during these first tests. This may be explained by a low signal to noise ratio of the signals obtained from the pick-ups in the present configuration. With heavy ions in higher charge states faster cooling times are expected. The experiments are an important step towards the realization of experiments with radioactive fragments, e.g. in order to measure nuclear masses or half-lives of stripped exotic ions

    Conceptual design of elliptical cavities for intensity and position sensitive beam measurements in storage rings

    Full text link
    Position sensitive beam monitors are indispensable for the beam diagnostics in storage rings. Apart from their applications in the measurements of beam parameters, they can be used in non-destructive in-ring decay studies of radioactive ion beams as well as enhancing precision in the isochronous mass measurement technique. In this work, we introduce a novel approach based on cavities with elliptical cross-section, in order to compensate for existing limitations in ion storage rings. The design is aimed primarily for future heavy ion storage rings of the FAIR project. The conceptual design is discussed together with simulation results.Comment: Added definition of Uv and Pdiss in the introduction section. Added Mode numbering in table 1 and figure 1 for more clarity. Corrected one wrong figure reference. Other minor typo correction

    Investigation of Planar Pick-up and Kicker Electrodes for Stochastic Cooling

    Get PDF
    The success of stochastic cooling crucially depends on the interaction between the beam and high frequency devices for detection (pick-up electrodes) and deflection (kicker electrodes). This contribution shows the theoretical investigation of a planar electrode to be used for stochastic cooling of secondary particles with a beta of 0.83. The coupling to the beam is realised by a slot line. Transition networks are added to extract the signal. The detailed investigation is performed via a numerical electromagnetic field analysis. The longitudinal kick of the deflectors is calculated as a function of the beam position and scaled to the applied voltage. According to the Panofsky-Wenzel theorem the transverse kick is obtained simultaneously. The electromagnetic properties of the discussed electrode are compared to existing ones as currently in use in the ESR storage ring (GSI, Darmstadt)

    A novel scheme for fast extraction of low energy beams from the ESR to the CRYRING

    Get PDF

    Temperature Dependence of Facet Ridges in Crystal Surfaces

    Full text link
    The equilibrium crystal shape of a body-centered solid-on-solid (BCSOS) model on a honeycomb lattice is studied numerically. We focus on the facet ridge endpoints (FRE). These points are equivalent to one dimensional KPZ-type growth in the exactly soluble square lattice BCSOS model. In our more general context the transfer matrix is not stochastic at the FRE points, and a more complex structure develops. We observe ridge lines sticking into the rough phase where thesurface orientation jumps inside the rounded part of the crystal. Moreover, the rough-to-faceted edges become first-order with a jump in surface orientation, between the FRE point and Pokrovsky-Talapov (PT) type critical endpoints. The latter display anisotropic scaling with exponent z=3z=3 instead of familiar PT value z=2z=2.Comment: 12 pages, 19 figure

    Crossover Scaling Functions in One Dimensional Dynamic Growth Models

    Full text link
    The crossover from Edwards-Wilkinson (s=0s=0) to KPZ (s>0s>0) type growth is studied for the BCSOS model. We calculate the exact numerical values for the k=0k=0 and 2π/N2\pi/N massgap for N18N\leq 18 using the master equation. We predict the structure of the crossover scaling function and confirm numerically that m04(π/N)2[1+3u2(s)N/(2π2)]0.5m_0\simeq 4 (\pi/N)^2 [1+3u^2(s) N/(2\pi^2)]^{0.5} and m12(π/N)2[1+u2(s)N/π2]0.5m_1\simeq 2 (\pi/N)^2 [1+ u^2(s) N/\pi^2]^{0.5}, with u(1)=1.03596967u(1)=1.03596967. KPZ type growth is equivalent to a phase transition in meso-scopic metallic rings where attractive interactions destroy the persistent current; and to endpoints of facet-ridges in equilibrium crystal shapes.Comment: 11 pages, TeX, figures upon reques

    West Nile Virus Antibody Prevalence in Wild Mammals, Southern Wisconsin

    Get PDF
    Twenty percent prevalence of West Nile virus antibody was found in free-ranging medium-sized Wisconsin mammals. No significant differences were noted in antibody prevalence with regard to sex, age, month of collection, or species. Our results suggest a similar route of infection in these mammals

    Fast Stochastic Cooling of Heavy Ions at the ESR Storage Ring

    Get PDF
    Since the completion of the installation of pick-up and kicker tanks in the ESR, stochastic cooling in all phase space dimensions has been demonstrated with rather short cooling times. New RF components were added. The system is now ready for experiments with secondary beams. The momentum sensitivity of the pick-up electrodes was measured. The ability of the Palmer cooling system to cool beams with a maximum momentum spread of ± 0.7 % was demonstrated. After injecting an uncooled primary argon beam from the SIS synchrotron, e-folding cooling times of 0.86 s in the longitudinal phase plane and 1.6 s in the horizontal plane were measured with 5×106 injected particles. These values are close to theoretical expectations. In a first experiment with uranium, the shortest cooling times have been below 0.5 s in both the longitudinal and vertical phase planes. The system cools the complete injected beam without beam loss. An experiment with beam accumulation following stochastic precooling was performed successfully. The resulting equilibrium phase space densities are high enough to be followed by fast electron cooling of the stack
    corecore